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Abstract
An analysis of discrete systems is important for understanding of various physical
processes, such as excitations in crystal lattices and molecular chains, the light
propagation in waveguide arrays, and the dynamics of Bose-condensate droplets.
In basic physical courses, usually the linear properties of discrete systems are
studied. In this paper we propose a pedagogical introduction to the theory of
nonlinear distributed systems. The main ideas and methods are illustrated using a
universal model for different physical applications, the discrete nonlinear
Schrödinger (DNLS) equation. We consider solutions of the DNLS equation and
analyse their linear stability. The notions of nonlinear plane waves, modulational
instability, discrete solitons and the anti-continuum limit are introduced and
thoroughly discussed. A Mathematica program is provided for better compre-
hension of results and further exploration. Also, a few problems, extending the
topic of the paper, for independent solution are given.

Supplementary material for this article is available online

Keywords: discrete systems, lattices, arrays, chains, discrete nonlinear
Schrodinger equation, discrete solitons, Mathematica code

(Some figures may appear in colour only in the online journal)

1. Introduction

A discrete system is a system that consists of several (or an infinite number of)well-separated points
(sites). Each site is characterised by some variables, so that at a given time these variables specify a
state of the system. A change of variables on each site may depend on values on other sites.

European Journal of Physics

Eur. J. Phys. 39 (2018) 055803 (13pp) https://doi.org/10.1088/1361-6404/aacca8

0143-0807/18/055803+13$33.00 © 2018 European Physical Society Printed in the UK 1

https://orcid.org/0000-0001-5849-3176
https://orcid.org/0000-0001-5849-3176
mailto:etsoy@uzsci.net
https://doi.org/10.1088/1361-6404/aacca8
https://doi.org/10.1088/1361-6404/aacca8
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/aacca8&domain=pdf&date_stamp=2018-07-06
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/aacca8&domain=pdf&date_stamp=2018-07-06


Many important physical systems, such as crystal lattices, atomic chains, polymers,
arrays of resonators and waveguides, electrical transmission lines, and spin lattices are
essentially discrete [1–6]. A recent advance in this field is summarised in books and research
papers, that are written mainly for specialists. The purpose of this paper is to give an
accessible introduction to the subject, and to illustrate the analytical methods used.

Different aspects of discrete systems are discussed in educational literature (see e.g.
[7–11]) to enhance the corresponding university courses. However, mainly linear properties
are studied in such courses. In this work, the basic ideas of the nonlinear dynamics are
presented. We demonstrate main steps for analysis of discrete systems, using a well-studied
model, the discrete nonlinear Schrödinger (DNLS) equation [1–6]. We analyse properties of
plane waves and localised modes. We also provide a script in Mathematica that helps to do
the analysis. A student can test these methods on the DNLS equation, and then extend and
modify them to study more complex systems. Our paper can also be useful for lecturers, who
want to include this topic to courses on nonlinear physics.

The DNLS equation is written in the following form:

u

t
u u u u ui

d

d
0, 1k

k k k k k0 1 1
2b b g+ + + + =+ -( ) ∣ ∣ ( )

where uk is the field value at kth point, k is an integer number, β>0 characterises a coupling
with neighbour sites, and γ is the nonlinearity parameter. In this section, we give examples of
different physical systems described by equation (1).

Let us consider an array of optical waveguides, see figure 1(a). The field variable uk
corresponds to the electric field E in kth waveguide. Waveguides are situated close to each
other, so that light in one waveguide can tunnel into nearest-neighbour waveguides. This
effect induces an overlap of modes and interaction of fields in the adjacent waveguides (see
the third term in equation (1)). It is assumed that the refractive index n of the material is
intensity-dependent, n n n E0 2

2= + ∣ ∣ . Such a dependence of n results in linear (the second)
term and nonlinear (the fourth) term in equation (1). Therefore, equation (1) describes light
propagation in a waveguide array. The equation can be derived from the Maxwell equations
in the limit of weakly coupled modes [1, 4, 6]. Parameter β0 is the linear propagation
constant, β is the coupling coefficient, and γ∼n2 characterises the Kerr nonlinearity. The
propagation distance z plays here the role of time. A study of beam dynamics in arrays can be
useful for light routing in photonic circuits, for beam steering and switching [1, 4, 6].
Waveguide arrays can serve as a universal testbed for analysis of phenomena from solid state
physics, such as Anderson localisation and Bloch oscillations.

Figure 1. Examples of systems, described by the DNLS equation. (a) An array of
optical rib waveguides. Light in a waveguide (a spot at k = 0) is coupled with nearest-
neighbour waveguides. (b) Clouds of Bose–Einstein condensate, distributed in minima
(k 1, 0= - and 1) of the periodic optical potential.
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Now, we consider a gas of ultra-cold (e.g. rubidium) atoms at temperature ∼10−7 K in an
optical lattice, see figure 1(b). Because of such a low temperature, all atoms are in the ground
state, and they form a new state of matter, a Bose–Einstein condensate (BEC) [12]. An optical
lattice, which is a standing wave created due to interference of laser beams, forms a periodic
potential for a BEC. Let us analyse a BEC distributed in the minima of the potential. A
relative number of atoms in the kth minimum are described by uk

2∣ ∣ . Then, assuming that
particles on different minima interact weakly due to tunnelling, and taking into account the
two-body scattering effect, one can arrive to equation (1). More rigorous derivation of
equation (1) from the Gross–Pitaevsky equation for a BEC in a periodic potential can be
found in [13]. A BEC in optical lattices, as an ensemble of coherent objects, is actively
studied from a fundamental point of view. A set of interacting condensate droplets can be
used in experiments on matter wave interference, and precise measurements [12].

The DNLS equation (1) describes also other systems, such as Josephson junction arrays,
layered magnetic systems, organic molecules and DNA, see [3, 5, 6]. Since the DNLS
equation has different applications, in this work we treat it in general terms, referring to uk as
the field variable and to t as time. Now, when the physical importance of equation (1) is
justified, let us consider its main properties.

Equation (1) has two conserved quantities:

P u H u u u u,
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In the context of waveguide arrays, P is the total power, while H is the Hamiltonian. The
second term in equation (1) can be eliminated by using transformation
u t u t texp ik k 0b( ) ( ) ( ). In the rest of the paper, we assume β0=0.

When γ=0, an excitation, initially localised on a single site, spreads across the array due
to coupling. Nonlinearity ( 0g ¹ ) can support localised states, in which the energy is locked
mainly in few sites. These localised states are called discrete solitons (DSs). There are two basic
types of solitons, namely, bright solitons and dark solitons. The names come from applications
in optics. A bright DS corresponds to a distribution that vanishes far from the mode centre. In
such a mode is observed a set of bright spots located in few waveguides. A dark DS corre-
sponds to a dip on a constant background. We focus our attention on bright DSs.

Plane waves and DSs are considered as fundamental modes of nonlinear discrete sys-
tems. Any initial field distribution with finite P ends up typically in a set of spreading waves
and DSs [2, 5]. Therefore, in order to study the dynamics of discrete systems, one needs to
understand properties of these excitations.

2. Analysis of waves in discrete systems

2.1. Plane waves

For discrete systems, it is instructive to start the analysis from a plane wave solution. We look
for a solution in the following form:

u t a qk texp i , 3k w= -( ) [ ( )] ( )
where a, q, and ω are the amplitude, the wave number and the frequency of the plane wave. A
substitution of equation (3) into (1) results in the following dispersion relation:

q a2 cos . 42w b g= - +( ) ( )
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This is an important characteristics of plane waves. The physical meaning of the dispersion
relation is simple. If at t=0, one prepares a profile in a form of equation (3) with given q,
then the real and imaginary parts oscillate in time with frequency ω. Alternatively, exciting in
time a single site with frequency ω, one generates a wave with wave number q defined by
equation (4).

First, we consider the dispersion relation of the linear system, γ=0 (or a → 0). The first
derivative dω/dq defines the group velocity, while the second derivative d2ω/dq2 is the wave
dispersion. Since, in general, qd d 02 2w ¹ , we conclude that the inter-site coupling induces
effective dispersion. This dispersion is responsible for a spreading of initially localised dis-
tribution. Another property, worth noticing, is that dispersion can change its sign, depending
on the value of q. We return to this property in the discussion of localised waves.

In presence of nonlinearity, 0g ¹ , the dispersion relation shifts up or down depending
on the sign of γ. The dependence of the wave frequency on the amplitude is typical for
nonlinear systems.

For q=0 (q=π), amplitudes aeiqk in nearest-neighbour sites have the same (opposite)
sign. The corresponding distribution is called unstaggered (staggered).

The next step of the analysis is to study the dynamics of small perturbations of the plane
wave. A growth of small perturbations is a manifestation of modulational instability (MI).
Usually, the result of MI is a structure with well-separated localised waves that can be
associated with DSs.

In order to find unstable wave parameters, we represent the solution in the following
form:

u t a b t qk texp i , 5k k w= + -( ) [ ( )] [ ( )] ( )

where bk(t) is a complex amplitude of small modulations of the plane wave. Substituting
equation (5) into (1), and taking only first-order terms on bk, we get the following linear
equation for perturbations:

b

t
b b b a b a bi

d

d
e e 2 0. 6k

k k
q

k
q

k k1
i

1
i 2 2 *w b g+ + + + + =-

-
+( ) ( ) ( )

Separating the real and imaginary parts of bk, and representing them Qn texp i~ - W[ ( )], we
obtain a linear algebraic system. The compatibility condition of this system gives the
dispersion relation of perturbations, see [5]:

Q q Q q Q q a2 sin sin 8 sin 2 cos 2 sin 2 cos . 72 2 2 2b b b gW - = -( ) ( ) [ ( ) ] ( )

When the right-hand side of equation (7) is negative, Ω is complex, and plane wave(3) is
unstable.

Figure 2 shows the dynamics of a plane wave, modulated initially by noise,
uk(0)=1+òrk, where rk is a random number with uniform distribution in [−1, 1], and
ò=10−3. Numerical simulations, as in figure 2, can be obtained by commands, similar to
those in steps 1 and 4 (MC.1 and MC.43) of the Mathematica code in the appendix; see also
Problem 1 in section 3.

Since noise has waves with arbitrary Q, some of the modulation wavenumbers are in the
unstable region. As a result of instability, a plane wave breaks into a set of soliton-like pulses.
Though the amplitudes of pulses in figure 2 are varied, the shapes and positions remain
basically the same. Therefore, MI indicates a presence of DSs in the system. We analyse
stationary DSs in the next section.

3 In the text, for brevity we use notation ‘MC.n’ that refers to nth step of the Mathematica code in appendix.
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2.2. Discrete bright solitons

There is no exact DS solutions of the DNLS equation. One can construct approximate
solutions for different limiting cases. One limit is the case when the soliton width is
much larger than the distance between sites. In other words, the variation of un from one
site to other is small. Then equation (1) can be approximated by the continuous NLS
equation:

w

t
h

w

x
w wi 2 0, 82

2

2
2b g

¶
¶

+
¶
¶

+ =∣ ∣ ( )

where w x t u t t, exp 2k k b» -( ) ( ) ( ), and h is the distance between neighbour sites. The NLS
equation is the completely integrable model [2] that has a vast number of exact solutions. We
can use the soliton solution of the NLS equation in order to construct an approximate
expression for the DS:

u t A ksech e , 9k s
A t

,
i 2 22n= b g+( ) ( ) ( )( )

where ν=(2β)1/2/(Aγ1/2) is the soliton width, and A is a free parameter taken such that
1n  . In general, in the analysis of a discrete system it is useful to consider the properties of

its continuous counterpart.
We mention that the continuous equation (8) has bright soliton solutions when βγ>0

[1, 2]. In contrast, the discrete counterpart(1) can have bright solitons for any sign of βγ,
provided that d2ω/dq2 γ>0. This is due to the change of the dispersion sign, mentioned in
section 2.1.

Another limit for an approximate solution is the anti-continuum limit [5], when β=0. In
this case, the points are decoupled from each other. Therefore, one can write a strongly
localised solution with only a single excited site

u t A e . 10k k
A t

0,
i 2d= g( ) ( )

When 0b ¹ , this solution is not valid, but it can be used as a basis solution in the
perturbation theory or numerical simulations.

Figure 2. The dynamics of a plane wave with random modulations. The plane wave
breaks up due to MI into a set of soliton-like pulses.

Eur. J. Phys. 39 (2018) 055803 E N Tsoy and B A Umarov

5



An exact profile of a DS for an arbitrary set of the system parameters can be found
numerically. We look for the solution in the form u t U texp ik k h= -( ) ( ). Then, the soliton
profile Un and the corresponding frequency η are found from the nonlinear eigenvalue pro-
blem:

U U U U U , 11k k k k k1 1
2b g h- + - =+ -( ) ∣ ∣ ( )

where k N1, ... ,= . The derivation of this stationary equation can be checked by using
symbolic calculations; see MC.2.

Eigenvalue problem(11) has N equations for N+1 unknowns, namely, η andU U, ... , N1 ,
subject to vanishing (zero or periodic) boundary conditions for Uk. A direct numerical solution
of such a problem is a difficult task. However, if we fix the value of η, then equations (11) are
just a set of N nonlinear algebraic equations for N unknowns. This set can easily be solved by
corresponding routines; see MC.3.

For the convergence of the numerical solution of equations (11), proper η and an initial
distribution should be chosen. A value of η should be taken below the band of linear waves

2 , 2linw b b= -[ ]. This can be deduced from the analysis of the dispersion relation(4); see
also Problem 4 in section 3. An initial distribution can be taken in a form close to a DS, for
example U A kexpk = -( ∣ ∣), where A is the soliton amplitude. An initial value of A can be
taken as A 1 2h g= (∣ ∣ ) ; see equation (10). However, we find that the numerical procedure
converges to the on-site (inter-site) soliton, even when initially only one (two) site(s) is
(are) excited. Thus, in the code, different solitons can be obtained by changing parameters
η, c1 and c2; see MC.1 and MC.3. Having a solution for one η, one can restore the whole
family of soliton solutions, by changing gradually the value of η; see also Problem 6 in
section 3.

In order to solve the set of equations (11) for a given η, one can use the Newton–
Raphson method, see e.g. [14], which is the default method of the Mathematica FindRoot
[] command; see MC.3. One can write equation (11) in a vector form f(z)=0, where

U U Uz , , ... , N1 2= ( ), and f is vector of functions, f f ff , , ... , N1 2= ( ). Then in the Newton–
Raphson method, a root is found by iterations [14] znew=zold+δz, where δz is a
solution of a set of linear equations J(zold) δz=−f(zold), and J is the Jacobian matrix
Jnm=∂ fn/∂ Um.

There are different types of DS solutions [1, 3, 5, 6, 15]. The distribution with a centre
at a site is called the on-site soliton, while that with a centre between sites is called the inter-
site soliton [1, 5]. Both on-site solitons and inter-site solitons can be symmetric or anti-
symmetric [15]. If we define u v1k

k
k= -( ) , and change γ →−γ and t → −t, then dynamics

of vk(t) is described by the same DNLS equation. It means, in particular, that if Uk is an
unstaggered mode with frequency η<0 for γ>0, then U1 k

k-( ) is a staggered mode with
η>0 for γ<0 [16]. This is similar to plane wave profiles with q=0 and q=π,
respectively. We consider only unstaggered symmetric solitons for γ>0 (but see also
Problem 5 in section 3).

We can check numerically that the solution found is indeed the eigenmode. For this
purpose, we integrate numerically equation (1) taking the solution of equations (11) as the
initial condition; see MC.4. We expect a stationary evolution at least for small t. Such
numerical simulations, using MC.4, show that on-site solitons are stable, while inter-site are
unstable [1, 5]. Figure 3 shows the dynamics of stable and unstable solitons.
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Physically relevant localised waves correspond to stable solutions. Therefore, it is
necessary to analyse the stability of DSs. For this purpose, similarly to equation (5), we
represent the solution as the soliton with small perturbations wk(t) added:

u t U w t texp i . 12k k k h= + -( ) [ ( )] ( ) ( )

Then, in the first approximation, the evolution of perturbations is described by the following
equation:

w

t
w w w U w wi

d

d
2 0, 13k

k k k k k k1 1
2 *h b g+ + + + + =+ -( ) ( ) ( )

which can be checked with the code; see MC.5. Next, we apply a procedure similar to that
used for the analysis of plane waves. Namely, we obtain from equation (13) the equations for
the real and imaginary parts of wn. Then substituting these parts in the form texp i~ - W( ), we
get a set of linear algebraic equations in a form F A A= W , where A is a real vector of length
2N of modulation amplitudes, and F is the matrix of coefficients. Eigenvalues of F are the
frequencies of modulations. A complex frequency of modulations means instability of DSs.
This stability analysis is valid also for an infinite array, N  ¥. All the steps described are
implemented in the code; see MC.6–MC.9. The distribution of eigenvalues on the complex
Ω-plane are shown in figure 4. Figure 4(a) shows that numerical accuracy of eigenvalue
calculations is of order 10−7.

Figure 3. Dynamics of (a) on-site and (b) inter-site discrete solitons, obtained from
numerical simulations of equation (1). The system parameters are β=0.5, γ=1,
and η=−2.

Figure 4. The distribution of modulation eigenvalues of the (a) on-site DS, and (b)
inter-site DS on the complex plane of Ω. The parameters are the same as in figure 3.
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After identification of regions of stable DSs, one can perform a further study of the
discrete system. For example, one can study the evolution of arbitrary localised distributions,
or the interaction of DSs.

3. Questions and problems

In this section, we suggest few problems. The aim of the problems is to help gain a deeper
understanding of the methods reviewed in this paper, and also to develop skills in working
with the Mathematica program in the appendix. Problems 1–7 consider the fundamental
properties of plane waves and solitons. These properties are common for various systems.
Solving these problems provides more insight into the nonlinear dynamics of discrete sys-
tems. Problems 8–12 and their extensions can be used as independent student projects. The
references at each problem are sources for further study.

Problem 1 [5, 17]. Modify the program for the case of a nonlinear plane wave to obtain a
plot of MI similar to figure 2.

Problem 2 [1, 5]. The MI theory (see equation (7)) predicts an infinite growth of
perturbations for some parameters. Does such infinite growth occur in numerical simulations
of the DNLS equation?

Problem 3 [1, 5]. Prove analytically that P and H in equation (2) are indeed the invariants of
equation (1). Include to the program a calculation of P. This helps to monitor errors of
numerical simulations, see MC.4.

Problem 4 [1, 5]. Analyse the dispersion relation(4), and figure out why the soliton
frequency should satisfy 2h b< - ( 0b > ). Hint: Consider the soliton centre and tails as
parts of plane waves.

Problem 5 [4, 15, 16]. Find anti-symmetric on-site and inter-site solitons for 0g > . Find
staggered solions for 0g < . Analyse their stability. For convergence, modify MC.3 to excite
initially 3–5 consecutive sites.

Problem 6 [1, 5]. Using MC.1 and MC.3 of the program, find the dependencies of the
soliton amplitude and P on η.

Problem 7 [18]. An initial condition in a form of a localised mode (see equation (11) and
MC.3) multiplied by pkexp i( ), where p is a constant, results in moving solitons. Modify step
MC.4 of the program to generate such solitons. How does the soliton velocity depend on η

and p?

Problem 8 [19]. Consider a linear array with a nonlinear defect, described by the following
equation:

u

t
u u u ui

d

d
0, 14k

k k k k
d

k1 1 ,0b gd+ + + =+ -( ) ∣ ∣ ( )

where d is an arbitrary exponent. Find modes localised on the defect, and check their
dynamics and stability.
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Problem 9 [20]. Consider a semi-infinite array of waveguides, described by equation (1)
with k 0> and u 00 = . Find and analyse localised modes with maximum at different
distances from the border (k = 1).

Problem 10 [21, 22]. Consider the cubic-quintic DNLS (C-Q DNLS) equation, which can
be represented in the following form:

u

t
u u u u u ui

d

d
0. 15k

k k k k k k1 1
2 4b g d+ + + + =+ -( ) ∣ ∣ ∣ ∣ ( )

Modify and apply the program to find the different types of a localised solutions of C-Q
DNLS equation and analyse their linear stability properties.

Problem 11 [2, 23, 24]. Consider the Ablowitz–Ladik (A–L) equation:

u

t
u u u u ui

d

d
0. 16k

k k k k k1 1
2

1 1b g+ + + + =+ - + -( ) ∣ ∣ ( ) ( )

This equation is an integrable discretization of the NLS equation and also has some
applications in physics. It has exact solitonic solutions. Modify and apply the program to
analyse the localised solutions of the A–L equation. One can include the on-site cubic term to
A–L equation (which destroys the integrability) and analyse the properties of localised
solutions:

u

t
u u u u u u ui

d

d
0. 17k

k k k k k k k1 1
2

1 1
2b g d+ + + + + =+ - + -( ) ∣ ∣ ( ) ∣ ∣ ( )

This equation is called the Salerno equation.

Problem 12 [25]. The following inhomogeneous DNLS equation describes the nonlinear
localised impurity modes:

u

t
u u u u u ui

d

d
0. 18k

k k k k k k k1 1
2

,0
4b g kd+ + + + =+ -( ) ∣ ∣ ∣ ∣ ( )

Use the Mathematica code to find these modes and check their stability.

4. Conclusion

The basic steps in the study of discrete systems have been presented. These steps include the
construction of plane wave solutions and soliton solutions of the discrete system, the deri-
vation of equations for small modulations, and analysis of stability. The corresponding code is
implemented in Mathematica. It is demonstrated that theoretical consideration together with
numerical modelling can substantially enhance the understanding of properties of discrete
systems. The approach described here is quite generic, and it can be used to study other
discrete systems.

The DNLS equation considered does not include many effects. An actual distributed
system can be described by more general types of discrete equations; some examples are
considered in section 3. Further extension of the DNLS model includes a consideration of
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two- and three-dimensional arrays. Also, one can study higher-order interactions, non-local
effects, and different types of nonlinearity. One can take into account external and parametric
perturbations. We believe that the method and the code presented in this work can serve as a
starting point to study these systems.
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Appendix. Mathematica code

Here we describe a code in Mathematica (ver.8.0) for symbolic and numerical analysis of
equation (1). A supplementary file is available online at stacks.iop.org/EJP/39/055803/
mmedia (both in np- and pdf-formats) provides the code with outputs, so that it gives a
working example for a particular set of parameters. The code is valid for equations with
nearest-neighbour terms, however it can easily be extended to more general cases. Steps
MC.1-MC.4 show a finding of a localised mode and a numerical simulation of its dynamics,
while MC.5–MC.10 are related to a derivation of equations for modulations and calculation of
the modulation spectrum.

1. Define parameters and the DNLS equation (eqn):

; ;
. , , ; ., . ;

nPoints 200 tend 50
par1 0 5 1 2 par2 c1 1 c2 1
eqn I u k t u k 1 t u k 1 t

u k t 2 Conjugate u k t
* *

* *

b g w
b

g

= =
= - > - > - >- = - > - >

= ¢ + + + -
+ 

{ } { }
[ ] [ ] ( [ ][ ] [ ][ ])

( [ ][ ]) [ [ ][ ]]

2. Derive the stationary equation (eqnStat) from the DNLS equation:

_ , ;
. , , , _ ;

,

sub1 u k Function t U k Exp I t
eqn1 Simplify eqn sub1 Assumptions t U i Reals
eqnStat Coefficient eqn1 Exp I t

* * *

* *

w
w

w

= - > -
= - > Î

= -

[ ] [{ } [ ] [ ]]
[ {{ [ ]} }]

[ [ ]]
/

3. Find eigenmode (eigenMode) from the list of stationary equations (eqnStatList):

, , , .
, ;

, ,
, . , , , ;

. , ;
, , , . ;

, ,
, ,

eqnStatList table eqnStat k 1 nPoints
U 0 U nPoints U nPoints 1 U 1

init table U k c1 KroneckerDelta nPoints 2 k
c2 KroneckerDelta nPoints 2 1 k par2 k 1 nPoints
eigenMode FindRoot eqnStatList par1 0 init
init1 table U k k 1 nPoints eigenMode
ListLinePlot init1 PlotRange nPoints 2 10 nPoints 2
10 All
PlotMarkers Automatic

*
*

=
- > + - >

= +
+

= ==
=

- > -
+

- >

[ { }]
{ [ ] [ ] [ ] [ ]}

[{ [ ] ( [ ]
[ ]) } { }]

[( ) ]
[ [ ] { }]
[ {{

} }
]

/

/

/

/
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4. Solve the DNLSE, using eigenmode as an initial condition:

, , , ;
. , , , .

, , ;
, , , , ,

, , , ;
, , , , , , . ;

,

initialCond Table u k 0 init1 k k 1 nPoints
dnlsList Join table eqn par1 0 k 1 nPoints
u 0 t u nPoints t u nPoints 1 t u 1 t initialCond

sol1 NDSolve dnlsList Table u k k 1 nPoints
t 0 tend MaxSteps 1000000

fig1 Evaluate table Abs u k t t 0 tend k 1 nPoints sol1
ListPlot3D fig1 PlotRange All

= ==
= ==
- > + - >

=
- >

=
- >

[ [ ][ ] [[ ]] { }]
[ [( ) { }]

{ [ ][ ] [ ][ ] [ ][ ] [ ][ ]} ]
[ [ [ ] { }]

{ } ]
[ [ [ [ ][ ]] { } { }] ]

[ ]

/ /

/

5. Derive an equation for the first correction, w[i][t]:

_ , ;
. ,

, , _ , , _ , ;
, , ,

sub1 u k Function t U k w k t Exp I t
res1 Coefficient Simplify eqn sub1 Assumptions

t U i Reals w i t Complexes Exp I t
eqnFirstCorr Coefficient Collect res1 1

* * *

* *




 

w

w w

= - > + -
= - >

Î Î -
=

[ ] [{ } ( [ ] [ ][ ]) [ ]]
[ [

{{ [ ] } [ ][ ] }] [ ]]
[ [ ] ]

/

6. Split equation eqnFirstCorr into real and imaginary parts (wr, wi):

. _ ,
,

_ , _ ;

res1 Simplify eqnFirstCorr w k Function t
wr k t I wi k t
Assumptions wr k t Reals wi k t Reals
eqnz1r Simplify ComplexExpand Im res1
eqnz1i Simplify ComplexExpand Re res1

*
= - >

+
- > Î Î

=
=

[ [ ] [{ }
( [ ][ ] [ ][ ])]

{ [ ][ ] [ ][ ] }]
[ [ [ ]]]
[ [ [ ]]]

/

7. Find left-hand sides (lhs1r and lhs1i) of the equations for spatial distributions:

_ , ,
_ , ;

. , , ;

. , , ;
, ,
, ,

sub2 wr k Function t ar k Exp I t
wi k Function t ai k Exp I t
eqn1r Expand Coefficient Simplify eqnz1r sub2 Exp I t 1
eqn1i Expand Coefficient Simplify eqnz1i sub2 Exp I t 1
lhs1r Simplify ar k eqn1r Coefficient eqn1r ar k 1
lhs1i Simplify ai k eqn1i Coefficient eqn1i ai k 1

* * *
* * *

* *
* *

* *
* *

= - > - W
- > - W

= - W
= - W
= W - W
= W - W

{ [ ] [{ } [ ] [ ]]
[ ] [{ } [ ] [ ]]}

[ [ [ ] [ ] ]]
[ [ [ ] [ ] ]]

[ [ ] [ [ ] ]]
[ [ ] [ [ ] ]]

/

/

8. Construct a matrix of coefficients in a difference form (matrF) and a vector of unknowns
(vectA):

, ,
, ;

, , , . ,
, , , . ;

, , , , , , , ;

sub3 ai 0 ai nPoints ai nPoints 1 ai 1
ar 0 ar nPoints ar nPoints 1 ar 1
matrFdiff Join table lhs1r k 1 nPoints sub3
table lhs1i k 1 nPoints sub3
vectA Join Table ar k k 1 nPoints table ai k k 1 nPoints

= - > + - >
- > + - >

=

=

{ [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]}

[ [ { }]
[ { }] ]

[ [ [ ] { }] [ [ ] { }]]

/

/
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9. Substitute eigenmode and parameters into matrFdiff, and convert it to a ‘standard’ form.
Then find eigenvalues of matrix F:

. . ;
, , ;

;

m1 matrFdiff eigenMode par1
bb1 matrF CoefficientArrays m1 vectA

ev1 Eigenvalues Normal matrF Max Im ev1

=
=

=
{ } [ ]

[ [ ]] [ [ ]]

/ /

10. Plot eigenvalues on the complex plane:

, , , , ;
, ,
, , ,

ev1Fig table Re ev1 i Im ev1 i i 1 2 nPoints
ListPlot ev1Fig PlotRange All PlotMarkers
Graphics Blue Thick Circle ImageSize 8

*=
- > - >

- >

[{ [ [[ ]]] [ [[ ]]]} { }]
[

[{ []} ]]
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